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A SYNTHESIS OF 1,6-DIOXASPIR0[4.5]DEC-3-ENES. 

Richard Whitby and Philip Kocierfski* 

Department of Chemistry, The University, Southampton, SO9 5NH, U.K. 

Summary: Base-catalysed rearrangement of a 2-alkynyl-tetrahydropyran generates an allenol ether 

intermediate which undergoes acid-catalysed cyclisation to the 1,6-dioxaspiro[4S]dec-3-ene system. 

We recently described a synthesis of the 1,7-dioxaspiro[5S]undec-4-ene system (4)’ which made strategic 

use of the stereoselective protonation2 of the 1,3-dialkylalkoxyallene (1) (Scheme 1). The oxonium ion (2) 

underwent rapid tandem cyclisation to give the spiroacetal (4) in 60% yield. Critical to the success of this 

approach were the mild conditions used in the cyclisation which permitted isolation of the acid-sensitive 

spiroacetal. We now report a synthesis of the 1,6-dioxaspiro[4S]dec-3-ene system (5) which is more 

challenging because it readily undergoes aromatisation to the furan (6) under the conditions previously used 

to generate the analogous spiroacetal(4). 
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The procedure outlined in Scheme 2 for the synthesis of the hypersensitive parent 1,6-dioxaspiro[4S]dec- 

3-ene (5) was designed to achieve the spirocyclisation in essentially one step under very mild conditions. 

Consequently the crucial allenol ether functionality was appended to the pre-formed pyran ring of intermediate 

(10). The intermediate (10) was generated in situ by protonation of the dianion (9) generated from the 

readily available 2-alkynyl-tetrahydropyran (8) by reaction with 2 equivalents of t-BuLi3. Although the 

unstable allenol ether intermediate could be isolated by quenching the reaction mixture with aqueous NaHC03 

followed by normal extractive work-up, better overall yields of the desired spiroacetal were obtained by 

reaction of the dianion (9) with an excess of acetic acid at -60°C as described in the following experimental 

procedure. 
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To a solution of alkyne (8) (0.65 g, 4.6 mmol) in THF (50 ml) at -700C was added dropwise t-butyl- 

lithium (9 ml, 1.4 M solution in pentane, 13 mmol). After stirring for a further 1 h at -65oC the reaction was 

quenched by the addition of acetic acid (1 g) in MeOH (5 ml) and allowed to warm to -400C over 1 h. The 

mixture was then poured into saturated aqueous NaHC03 (50 ml), dried over Na2S04, and chromatographed 

on basic alumina (40% ether /hexane-100% ether) to afford the spiroacetal (5) as a colourless volatile oil 

which decomposes on attempted kugelrohr distillation. 

The procedure outlined in Scheme 2 can also be applied to substituted 1,6-dioxaspiro[4.5]dec-3-enes. For 

example treatment of (12) with t-BuLi followed by acetic acid as described gave a 75% yield of a 2:l mixture 

of the isomeric spiroacetals (13) and (14) which were easily separated by column chromatography on silica 

gel eluting with ether-hexane. However best results were obtained in the cyclisation of the tertiary alcohol 

(15) where elimination to a furan is blocked. The cyclohexane ring has two effects: it somewhat destabilises 

the allenyl form of the dianion leading to less regioselective protonation [24% recovered alkyne (U)] but it 

also directs protonation of the allenol ether intermediate to give entirely cis-alkene. The yield of spiroacetal 

(16) was 99% based on recovered starting alkyne. 
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The approach outlined herein can also be applied to the synthesis of the homologous 1,7- 

dioxaspiro[U]undec-4-ene ring system (4) as shown in Scheme 3. 
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In conclusion we have exploited the extremely easy and stereoselective protonation of both cyclic and 

acyclic allenol ethers to generate oxonium ion intermediates which cyclise to the novel 1,6-dioxaspiro[4S]dec- 

3-ene system and the better known 1,7-dioxaspiro[5.5]undecane systeml. 
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